Flussi di CO₂ all'interfaccia a<mark>ria-mare nel</mark> Mediterraneo: una panoram<mark>ica su un</mark>

20 SILLALALLAND

anno di dati a Lampedusa

Mattia Pecci^{1,2}, Fabrizio Anello¹, Simone Colella³, Tatiana Di Iorio¹, Alcide di Sarra¹, Salvatore Marullo¹, Daniela Meloni¹, Francesco Monteleone¹, Giandomenico Pace¹, Salvatore Piacentino¹, Damiano Sferlazzo¹

¹National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Italy ²Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Rome, Italy

³National Research Council, Institute of Marine Sciences (CNR-ISMAR), Rome, Italy

••• Integrated Carbon Observation System

http://www.lampedusa.enea.it

ICOS

35.52°N, 12.63°E

PRO-ICOS-MED

- Within the ICOS and ACTRIS EU infrastructures significant upgrades of atmospheric, marine, and terrestrial instruments is ongoing
- Within ICOS, also the terrestrial ecosystem site is under development
- Lampedusa will be the only atmosphere/ocean/terrestrial ecosystem integrated site within ICOS

35.49°N, 12.47°E

- Meteorological station [air pressure, temperature, humidity]
- Gill Windsonic anemometer [wind speed and direction]
- CMP21 pyranometer [downward shortwave irradiance]
- CGR4 pyrgeometer [downward longwave irradiance]
- Photosynthetic radiation radiometer [downward photosynthetically active radiation]
- Electronic level [radiometers' attitude]
- Satlantic Hyper-OCR [spectral downwelling irradiance; CNR]
- Seabird SBE39P at 1 m depth [ocean pressure and temperature]
- Seabird SBE39P at 2 m depth [ocean pressure and temperature]
- 2xSatlantic Hyper-OCR at 2.5 m depth (upwellling and downwelling spectral irradiances; CNR]
- Satlantic OCR-507R10W at 2.5 m depth [7-band upwelling radiance; CNR]
- Seabird SBE50 at 2.5 m depth [pressure; CNR]
- Seabird PAR sensor at 2.5 m
- WetLabs ECO-3 at 5 m depth [backscattering, chlorophyll, F-DOM]
- pCO₂, at 5 m depth
- CTD at 5 m depth
- pH at 5 m depth
- 2xSatlantic OCR-507ICSW at 6 m depth (upwelling and downwelling 7-band irradiances; CNR]
- Satlantic OCR-507R10W at 6 m depth [7-band upwelling radiance; CNR]
- Seabird SBE50 at 6 m depth [pressure; CNR]
- Seabird SBE37 at 18 m depth [ocean pressure, temperature, salinity, dissolved oxygen]
- WetLabs ECO-3 at 17 m depth [backscattering, chlorophyll, F-DOM; CNR]
- Chlorophyll, CDOM, backscattering at 17 m depth
- 40 m thermistor chain

$$F = K_{wa} KH (\Delta pCO_2)_{sea-atm}$$

-K_{wa}: gas transfer velocity \rightarrow SST, <U²>

-KH: solubility \rightarrow SST e SSS

-pCO_{2sea}

$$-pCO_{2air} \rightarrow xCO2, SST, SSS, P_{atm}$$

Mediterranean Sea Biogeochemistry Analysis and Forecast - https://doi.org/10.25423/cmcc/medsea_analysisforecast_bgc_006_014_medbfm3

Next steps: -Satellite data \rightarrow SST

Mediterranean Sea High Resolution and Ultra High Resolution Sea Surface Temperature Analysis - https://doi.org/10.48670/moi-00172 MIRAS L-band radiometer - SMOS ESA Satellite

Next steps: -Satellite data \rightarrow SSS

Scatter plot SMAP-INSITU, nov2021-mav2022

L-band radar and radiometer - NASA SMAP Satellite MIRAS L-band radiometer - SMOS ESA Satellite

Next steps:

-Satellite data \rightarrow wind data

Marullo et al., 2021

Next steps: -Satellite data

- -Satellite pCO₂ estimation \rightarrow Integration of insitu and satellite data to compute fluxes
- -Satellite algorithm optimization for Mediterranean
- -Basin-scale extension \rightarrow monitoring spatio-temporal variability

Contact: mattia.pecci@uniroma1.it